31 research outputs found

    Optimisation of a Brownian dynamics algorithm for semidilute polymer solutions

    Full text link
    Simulating the static and dynamic properties of semidilute polymer solutions with Brownian dynamics (BD) requires the computation of a large system of polymer chains coupled to one another through excluded-volume and hydrodynamic interactions. In the presence of periodic boundary conditions, long-ranged hydrodynamic interactions are frequently summed with the Ewald summation technique. By performing detailed simulations that shed light on the influence of several tuning parameters involved both in the Ewald summation method, and in the efficient treatment of Brownian forces, we develop a BD algorithm in which the computational cost scales as O(N^{1.8}), where N is the number of monomers in the simulation box. We show that Beenakker's original implementation of the Ewald sum, which is only valid for systems without bead overlap, can be modified so that \theta-solutions can be simulated by switching off excluded-volume interactions. A comparison of the predictions of the radius of gyration, the end-to-end vector, and the self-diffusion coefficient by BD, at a range of concentrations, with the hybrid Lattice Boltzmann/Molecular Dynamics (LB/MD) method shows excellent agreement between the two methods. In contrast to the situation for dilute solutions, the LB/MD method is shown to be significantly more computationally efficient than the current implementation of BD for simulating semidilute solutions. We argue however that further optimisations should be possible.Comment: 17 pages, 8 figures, revised version to appear in Physical Review E (2012

    Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations

    Full text link
    Periodic boundary conditions for planar mixed flows are implemented in the context of a multi-chain Brownian dynamics simulation algorithm. The effect of shear rate γ˙\dot{\gamma}, and extension rate ϵ˙\dot{\epsilon}, on the size of polymer chains, \left, and on the polymer contribution to viscosity, η\eta, is examined for solutions of FENE dumbbells at finite concentrations, with excluded volume interactions between the beads taken into account. The influence of the mixedness parameter, χ\chi, and flow strength, Γ˙\dot{\Gamma}, on \left and η\eta, is also examined, where χ0\chi \rightarrow 0 corresponds to pure shear flow, and χ1\chi \rightarrow 1 corresponds to pure extensional flow. It is shown that there exists a critical value, χc\chi_\text{c}, such that the flow is shear dominated for χ<χc\chi < \chi_\text{c}, and extension dominated for χ>χc\chi > \chi_\text{c}.Comment: 18 pages, 12 figures, to appear in Chemical Engineering Scienc

    Dynamic crossover scaling in polymer solutions

    Full text link
    The crossover region in the phase diagram of polymer solutions, in the regime above the overlap concentration, is explored by Brownian Dynamics simulations, to map out the universal crossover scaling functions for the gyration radius and the single-chain diffusion constant. Scaling considerations, our simulation results, and recently reported data on the polymer contribution to the viscosity obtained from rheological measurements on DNA systems, support the assumption that there are simple relations between these functions, such that they can be inferred from one another.Comment: 4 pages, 6 figures, 1 Table. Revised version to appear in Physical Review Letters. Includes supplemental material

    The Balancing Act of Intrinsically Disordered Proteins

    Get PDF
    Intrinsically disordered proteins (IDPs) or regions (IDRs) perform diverse cellular functions, but are also prone to forming promiscuous and potentially deleterious interactions. We investigate the extent to which the properties of, and content in, IDRs have adapted to enable functional diversity while limiting interference from promiscuous interactions in the crowded cellular environment. Information on protein sequences, their predicted intrinsic disorder, and 3D structure contents is related to data on protein cellular concentrations, gene co-expression, and protein-protein interactions in the well-studied yeast Saccharomyces cerevisiae. Results reveal that both the protein IDR content and the frequency of "sticky" amino acids in IDRs (those more frequently involved in protein interfaces) decrease with increasing protein cellular concentration. This implies that the IDR content and the amino acid composition of IDRs experience negative selection as the protein concentration increases. In the S. cerevisiae protein-protein interaction network, the higher a protein's IDR content, the more frequently it interacts with IDR-containing partners, and the more functionally diverse the partners are. Employing a clustering analysis of Gene Ontology terms, we newly identify ~600 putative multifunctional proteins in S. cerevisiae. Strikingly, these proteins are enriched in IDRs and contribute significantly to all the observed trends. In particular, IDRs of multi-functional proteins feature more sticky amino acids than IDRs of their non-multifunctional counterparts, or the surfaces of structured yeast proteins. This property likely affords sufficient binding affinity for the functional interactions, commonly mediated by short IDR segments, thereby counterbalancing the loss in overall IDR conformational entropy upon binding

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.Peer reviewe

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    BackgroundThe Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.ResultsHere, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.ConclusionWe conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.</p

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Machine Learning Approaches Towards Protein Structure and Function Prediction

    No full text
    Proteins are drivers of almost all biological processes in the cell. The functions of a protein are dependent on their three-dimensional structure and elucidating the structure and function of proteins is key to understanding how a biological system operates. In this research, we developed computational methods using machine learning techniques to predicts the structure and function of proteins. Protein 3D structure prediction has advanced significantly in recent years, largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). The performance of these models depends on the number of similar protein sequences to the query protein, wherein some cases similar sequences are few but dissimilar sequences with local similarities are more and can be helpful. We have developed a novel deep learning-based approach AttentiveDist which further improves over the previous state of art. We added an attention mechanism where dis-similar sequences are also used (increasing number of sequences) and the model itself determines which information from such sequences it should attend to. We showed that the improvement of distance predictions was successfully transferred to achieve better protein tertiary structure modeling. We also show that structure prediction from a predicted distance map can be further enhanced by using predicted inter-residue sidechain center distances and main-chain hydrogen-bonds. Protein function prediction is another avenue we explored where we want to predict the function that a protein will perform. The crux of the approach is to predict the function of protein based on the function of similar sequences. Here, we developed a method where we use dissimilar sequences to extract additional information and improve performance over the previous approaches. We used phylogenetic analysis to determine if a dissimilar sequence can be close to the query sequence and thus can provide functional information. Our method was ranked highly in worldwide protein function prediction competition CAFA3 (2016-2019). Further, we expanded the method with a neural network to predict protein toxicity that can be used as a safety check for human-designed protein sequences

    Unravelling the dynamics of semidilute polymer solutions using Brownian dynamics

    No full text
    A polymer solution has three concentration regimes: (i) dilute (ii) semidilute and (iii) concentrated. There are a number of contexts involving polymer solutions, such as in the spinning of nanofi bers or in ink jet printing, where in order to achieve the most optimal outcome the concentration of polymers must be in the semidilute regime. In many biological contexts as well, such as the diffusion of protein and other biomolecules, the essential physics occur in the semidilute regime. Therefore, it is extremely important to understand the behavior of semidilute polymer solutions from the fundamental and also from the technological point of view. A significant amount of research has been carried out in the dilute and concentrated regimes in the past by means of experiments, theories and computer simulations. These two regimes have been explored successfully because the behavior of polymer solutions in the dilute and concentrated regimes can be understood by studying the behavior of single molecules. In the dilute case the motivation for this is obvious, while in the concentrated case, by treating all the molecules that surround a particular molecule as obstacles that constrain its motion, the entire problem is reduced to understanding the motion of a polymer in a tube. This approximation, however, is not valid in the semidilute regime, which lies between the dilute and concentrated regimes, because of all the many-body interactions, that arise in this regime. The main focus of this thesis is to develop an optimized Brownian dynamics (BD) simulation algorithm for semidilute polymer solutions at and far from equilibrium, that is capable of accounting for the many-body interactions. The goal is to use this algorithm to predict various physical properties for a range of concentrations and temperatures and to interpret the results in terms of the blob scaling theory. The development of a BD simulation algorithm for multi-chain systems requires the consideration of a large system of polymer chains coupled to one another through excluded volume interactions (which are short-range in space) and hydrodynamic interactions (which are long-range in space). In the presence of periodic boundary conditions, long-ranged hydrodynamic interactions are frequently summed with the Ewald summation technique (Beenakker, 1986; Stoltz et al., 2006). By performing detailed simulations that shed light on the influence of several tuning parameters involved both in the Ewald summation method, and in the efficient treatment of Brownian forces, we describe the development of a BD algorithm in this thesis, in which the computational cost scales as O(N^{1.8}), where N is the number of monomers in the simulation box. It is also shown that Beenakker's original implementation of the Ewald sum, which is only valid for systems without bead overlap, can be modified so that _ solutions can be simulated by switching off excluded volume interactions. Comparison of the predictions by the BD algorithm of the gyration radius, the end-to-end vector, and the self-diffusion coefficient with the hybrid lattice Boltzmann-Molecular dynamics (LB-MD) method (Ahlrichs and Dunweg, 1999) shows excellent agreement between the two methods. This study has been published in the paper Jain et al. (2012). The behavior of semidilute polymer solutions at equilibrium varies significantly with concentration and solvent quality. These effects are reflected in the concentration driven crossover from the dilute to the concentrated regime, and in the solvent quality driven crossover from theta solvents to good solvents in the phase diagram of polymer solutions. This double crossover region for concentration above the overlap concentration, is explored by Brownian dynamics simulations to map out the universal crossover scaling functions for the gyration radius and the single-chain diffusion constant. Scaling considerations (Rubinstein and Colby, 2003), our simulation results, and recently reported experimental data (Pan, Nguyen, Sunthar, Sridhar & Prakash, Pan et al.) on the polymer contribution to the zero-shear rate viscosity obtained from rheological measurements on DNA systems support the assumption that there are simple relations between these functions, such that they can be inferred from one another. This study has been published in the paper Jain et al. (2012). Unlike the simulation of equilibrium systems where periodic boundary conditions (PBCs) are used in an orthogonal cell to get rid of wall effects, for the simulation of far from equilibrium systems, appropriate PBCs need to be used such that they are compatible with any particular imposed flow. One should also be able to carry out the simulation for an arbitrary amount of time. Commonly, the Lees Edwards PBC (Lees and Edwards, 1972) is used for planar shear flow and the Kraynik-Reinelt PBC (Kraynik and Reinelt, 1992) is used for planar elongational flow. These PBCs have been used and tested in molecular dynamics simulations (Bhupathiraju et al., 1996; Todd and Daivis, 1998) and multi-chain BD simulations (Stoltz et al., 2006). In this thesis PBCs that can handle a planar mixed flow (which is a linear combination of planar elongational flow and planar shear flow) (Hunt et al., 2010) is implemented in a multi-chain BD simulation algorithm for semidilute polymer solutions. Preliminary results on the validation of the planar mixed flow algorithm are presented. References: 1. Beenakker, C. W. J., 1986: Ewald sum of the Rotne-Prager tensor. J.Chem.Phys., 85, 1581-1582. 2. Stoltz, C., J. J. de Pablo, and M. D. Graham, 2006: Concentration dependence of shear and extensional rheology of polymer simulations: Brownian dynamics simulations. J.Rheol., 502, 137. 3. Ahlrichs, P. and B. Dunweg, 1999: Simulation of a single polymer chain in solution by combining Lattice Boltzmann and molecular dynamics. J.Chem.Phys., 111, 8225. 4. Jain, A., P. Sunthar, B. Dunweg, and J. R. Prakash, 2012: Optimization of a Brownian-dynamics algorithm for semidilute polymer solutions. Phys. Rev. E, 85, 066703. 5. Rubinstein, M. and R. H. Colby, 2003: Polymer Physics. Oxford University Press 6. Pan, S., D. A. Nguyen, P. Sunthar, T. Sridhar, and J. R. Prakash Universal solvent quality crossover of the zero shear rate viscosity of semidilute DNA solutions. 2011arXiv1112.3720P. 7. Jain, A., B. Dunweg, and J. R. Prakash, 2012: Dynamic crossover scaling in polymer solutions. Phys. Rev. Lett., 109, 088302. 8. Lees, A. W. and S. F. Edwards, 1972: The computer studies of transport processes under extreme conditions. J. Phys. C: Solid State Phys., 5, 1921-1929. 9. Kraynik, A. M. and D. A. Reinelt, 1992: Extensional motions of spatially periodic lattices. Int. J. Multiphase Flow, 18, 1045. 10. Bhupathiraju, R., P. T. Cummings, and H. D. Cochran, 1996: An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. Mol.Phys., 88(6), 1665-1670. 11.Todd, B. D. and P. J. Daivis, 1998: Non-equilibrium molecular dynamics simulations of planar elongational flow with spatially and temporally periodic boundary conditions. Phys. Rev. Lett., 81, 1118. 12. Hunt, T. A., S. Bernardi, and B. D. Todd, 2010: A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow. J.Chem.Phys., 133(15), 154116
    corecore